WATER INDEX OF TWO MAIZE CULTIVARS UNDER TWO SEED SYSTEMS
Abstract
This trial was realized at El Ejido, Los Santos, with the objective of determining the water index of two maize cultivars (hybrid and variety) through the plants temperature, under two planting systems (irrigation and rainfed). Samples were taken every 10 days with a digital infrared thermometer to determine foliage and soil temperatures. Soil humidity was determined by gravimetry method, tensiometer and humidity measuring bulbs. Chlorophyll content was measured with a chlorophyll meter. Water index, as the difference between crop and air temperatures. Water index and hybrid biomass under rainfed conditions were correlated (R2= 0,79). The less the index, the largest the biomass percentage. At the same stage, water index and chlorophyll content were also correlated (R2= 0,53). There was observed a tendency to an increase in soil temperature as water index increasing. Maize variety similarly; water index was correlated to biomass percentage and chlorophyll content, with R2 of 0,53 and 0,70 respectively. Yields of hybrid and variety, planted in August under irrigation, were superior to those obtainedunder rainfed conditions. For October plantings, yields of both cultivars were very similar under irrigation and rainfed conditions.
Downloads
References
ANAM (Autoridad Nacional Del Ambiente, PA). 2011. Segunda Comunicación Nacional sobre Cambio Climático: ante la convención marco de las Naciones Unidas sobre el cambio climático. – 2a ed.-- Panamá. 170 p.
Azcón, J; Talón, M. 2008. Fundamentos de fisiología vegetal 2ªEd. McGraw-Hill Interamericana de España, S.A.U., Madrid. 669 p.
Burgos, C; Perdomo, R; Morales, C; Cayón, D. 1998. Efecto de los niveles de agua en el suelo sobre la palma de aceite (Elaeis guineensis Jacq.). II. Estado hídrico diario de palmas en etapa de vivero. Revista Palmas 19(2): 37-44.
Cakir R. 2004. Effect of Water Stress at Different Development Stages on Vegetative and Reproductive Growth of Corn. Field Crops Research 89: 1-16.
Carrasco, J. 2017. Respuesta al estrés hídrico en plantas mediterráneas perspectiva frente al cambio climático. Universidad Complutense. ES. 20 p.
CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo, MX). 2013. Contenido de humedad del suelo. Guía para comparar las prácticas de manejo de cultivo. Programa de Investigación de Cambio Climático. MX. 12 p.
Gordón, R. 2007. Guía técnica: Manejo integrado del cultivo de maíz 2.ed. Instituto de Investigación Agropecuaria de Panamá. 47 p.
Marshall, J.1979. Lösch revisited-again. Journal of Regional Science 19(4): 3.
Pask, A; Pietragalla, J; Mullan, D; Chávez, P; Reynolds, M. 2013. Fitomejoramiento Fisiológico II: Una Guía de Campo para la Caracterización Fenotípica de Trigo. México, D.F.: CIMMYT. 140 p.
Pinter, P; Reginato, R. 1982. A thermal infrared technique for monitoring cotton water stress and scheduling irrigations. Transactions of the ASAE. p. 1651-1655.
Sáez, A. 2018. Efecto del déficit hídrico y temperatura ambiental sobre el cultivo de maíz en El Ejido de Los Santos. Universidad de Panamá. 94 p.
Taiz, L; Zeiger, E. 2002. Fisiología del estrés. In Fisiología Vegetal (Vol.II). Universitat Jaume I, Castelló de la Plana. ES. 1140 p.
Yzarraga, W; Trebejo, I; Noriega, V. 2010. Evaluación del efecto del clima en la producción y productividad del maíz amarillo duro en la costa central del Perú. Universidad Nacional Agraria La Molina. Lima, PE. 90 p.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.
