VARIANTES ASOCIADAS A MÚLTIPLES RASGOS DE CALIDAD CÁRNICA EN GANADO CRIOLLO GUAYMÍ Y GUABALÁ
Resumen
En los programas de conservación de razas criollas se destaca la importancia de estudiar, más allá de lo histórico y cultural, rasgos como la calidad de la carne. Investigaciones sobre genes como MYOD1 y LCORL, destacan su impacto en características como el marmoleo y la terneza, fundamentales para el mejoramiento de razas criollas. Este estudio, integrado en el proyecto Innovative Management of Animal Genetic Resources (IMAGE-FAO), analizó polimorfismos de 33 SNP en muestras de las razas Guaymí y Guabalá, empleando la plataforma de secuenciación de próxima generación. Se llevaron a cabo análisis de la variabilidad genética intra-poblacional y equilibrio Hardy-Weinberg de cada raza. Los resultados evidenciaron diferencias significativas en o entre las frecuencias alélicas entre las razas, demostrando la presencia de variantes genéticas asociadas a la calidad cárnica. La evaluación de la heterocigosidad y los coeficientes de endogamia subrayan la existencia de una mayor diversidad genética y una menor predisposición a la endogamia en la raza Guaymí, comparada con la Guabalá. Este hallazgo destaca la importancia de conservar y explotar esta diversidad genética para el mejoramiento de características cárnicas. Además, el estudio logro identificar las variantes polimórficas y rasgos relacionados con el crecimiento, la calidad de la carne y el metabolismo de las grasas; destacando la selección genética como una herramienta clave para la optimización de atributos deseables en el ganado. Estos descubrimientos ofrecen una base sólida para futuras investigaciones y aplicaciones en el mejoramiento genético, enfatizando la necesidad de estrategias que aseguren productos cárnicos de alta calidad y promuevan la sostenibilidad de la producción bovina.
Descargas
Citas
Aiello, D., Patel, K., & Lasagna, E. (2018). The myostatin gene: An overview of mechanisms of action and its relevance to livestock animals. Animal Genetics, 49(6), 505-519. https://doi.org/10.1111/age.12696
Anzola Vásquez, H. (2005). Conservación y utilización de las razas bovinas criollas y colombianas para el desarrollo rural sostenible. Archivos de Zootecnia, 54(206-207), 141-144. Retrieved December 12, 2023, from. https://www.redalyc.org/articulo.oa?id=49520704
Armstrong, E., Peñagaricano, F., Artigas, R., De Soto, L., Corbi, C., Llambí, S., Rincón, G., & Postiglioni, A. (2011). Marcadores moleculares asociados al veteado de la carne en bovinos Criollos uruguayos. Archivos de Zootecnia, 60(231), 707-716. https://dx.doi.org/10.4321/S0004-05922011000300058
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., & Bonhomme, F. (2004). Genetix: 4.05 Logiciel sous WindowsTM pour la genetique des populations. Montpellier, France: Laboraoire Genoma Populations, Interactions, Adaptations. https://www.scienceopen.com/document?vid=9a3e2cf3-2971-405c-8297-258227c3cb30
Berry, D., Conroy, S., Hegarty, P., Evans, R., Pabiou, T., & Judge, M. (2020). Inter-animal genetic variability exist in organoleptic properties of prime beef meat. Meat Science, 173, 108401. https://doi.org/10.1016/j.meatsci.2020.108401
Bittante, G. (2023). Biodiversity and genetics of beef quality, a review. Italian Journal of Animal Science, 22, 867- 884. https://doi.org/10.1080/1828051X.2023.2216712
Blecha, I. M., Siqueira, F., Ferreira, A. B., Feijó, G. L., Torres Junior, R. A., Medeiros, S. R., Sousa, I. I., Santiago, G. G., & Ferraz, A. L. (2015). Identification and evaluation of polymorphisms in FABP3 and FABP4 in beef cattle. Genetics and Molecular Research, 14(4), 16353-16363. https://doi.org/10.4238/2015.December.9.3
Bora, S.K., Tessema, T.S. & Girmay, G. (2023). Genetic Diversity and Population Structure of Selected Ethiopian Indigenous Cattle Breeds Using Microsatellite Markers. Genetics Research, 2023(1), 1106755. https://doi.org/10.1155/2023/1106755
Cezard, T., Cunningham, F., Hunt, S. E., Koylass, B., Kumar, N., Saunders, G., Shen, A., Silva, A. F., Tsukanov, K., Venkataraman, S., et al. (2021). The European Variation Archive: a FAIR resource of genomic variation for all species. Nucleic Acids Research, 50(D1), D1216-D1220. https://doi.org/10.1093/nar/gkab960
Cole, J. B., Wiggans, G. R., Ma, L., Sonstegard, T. S., Lawlor, T. J., Jr, Crooker, B. A., Van Tassell, C. P., Yang, J., Wang, S., Matukumalli, L. K., & Da, Y. (2011). Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics, 12, 408. https://doi.org/10.1186/1471-2164-12-408
Du, X. H., Gan, Q. F., Yuan, Z. R., Gao, X., Zhang, L. P., Gao, H. J., Li, J. Y., & Xu, S. Z. (2013). Polymorphism of MyoD1 and Myf6 genes and associations with carcass and meat quality traits in beef cattle. Genetics and Molecular Research, 12(4), 6708-6717. http://dx.doi.org/10.4238/2013.December.13.4
Dunner, S., Sevane, N., García, D., Cortés, Ó., Valentini, A., Williams, J., Mangin, B., Cañón, J., & Levéziel, H. (2013). Association of genes involved in carcass and meat quality traits in 15 European bovine breeds. Livestock Science, 154, 34-44. https://doi.org/10.1016/j.livsci.2013.02.020
Edea Zewdu, Jung Kyoung Sub, Shin Sung-Sub, Yoo Song-Won, Choi Jae Won, Kim Kwan-Suk. (2020). Signatures of positive selection underlying beef production traits in Korean cattle breeds. J Anim Sci Technol, 62(3), 293-305. https://doi.org/10.5187/jast.2020.62.3.293
Elsik, C. G., Unni, D. R., Diesh, C. M., Tayal, A., Emery, M. L., Nguyen, H. N., & Hagen, D. E. (2016). Bovine Genome Database: new tools for gleaning function from the Bos taurus genome. Nucleic Acids Research, 44(D1), D834-D839. https://doi.org/10.1093/nar/gkv1077
Excoffier, L., Laval, G., & Schneider, S. (2007). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online, 1, 47-50. https://pubmed.ncbi.nlm.nih.gov/19325852
Fontanesi, L., Calò, D. G., Galimberti, G., Negrini, R., Marino, R., Nardone, A., Ajmone-Marsan, P., & Russo, V. (2014). A candidate gene association study for nine economically important traits in Italian Holstein cattle. Animal Genetics, 45(4), 576-580. https://doi.org/10.1111/age.12164
Gill, J., Bishop, S., McCorquodale, C., Williams, J., & Wiener, P. (2009). Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle. Genet Sel Evol, 41, 36. https://doi.org/10.1186/1297-9686-41-36
Gill, J., Bishop, S., McCorquodale, C., Williams, J., & Wiener, P. (2010). Associations between single nucleotide polymorphisms in multiple candidate genes and carcass and meat quality traits in a commercial Angus-cross population. Meat Science, 86(4), 985–993. https://doi.org/10.1016/j.meatsci.2010.08.005
Ginja, C., Gama, L. T., Cortes, Ó., Delgado, J. V., Dunner, S., García, D., Landi, V., Martín-Burriel, I., Martínez-Martínez, A., Penedo, C., Rodellar, C., Zaragoza, P., Cañon, J., & Consortium, B. (2013). Analysis of conservation priorities of Iberoamerican cattle based on autosomal microsatellite markers. Genetics Selection Evolution Genet Sel Evol, 45, 35. https://doi.org/10.1186/1297-9686-45-35
Guo, S. W., & Thompson, E. A. (1992). Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 48, 361-372. https://doi.org/10.2307/2532296
Gurgul, A., Szmatoła, T., Ropka-Molik, K., Jasielczuk, I., Pawlina, K., Semik, E., & Bugno-Poniewierska, M. (2015). Identification of genome-wide selection signatures in the Limousin beef cattle breed. Journal of Animal Breeding and Genetics, 133(4), 264-276. https://doi.org/10.1111/jbg.12196
Han, Y. J., Chen, Y., Liu, Y., & Liu, X. L. (2017). Sequence variants of the LCORL gene and its association with growth and carcass traits in Qinchuan cattle in China. Journal of Genetics, 96, 9-17. https://link.springer.com/article/10.1007/s12041-016-0732-0
Hu, Z.-L., Fritz, E. R., & Reecy, J. M. (2007). AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Research, 35(Database issue), D604-D609. https://doi.org/10.1093/nar/gkl946
Jiang, Z., Michal, J. J., Chen, J., Daniels, T. F., Kunej, T., Garcia, M. D., Gaskins, C. T., Busboom, J. R., Alexander, L. J., Wright, R. W., Jr, & MacNeil, M. D. (2009). Discovery of novel genetic networks associated with 19 economically important traits in beef cattle. International Journal of Biological Sciences, 5(6), 528-542. https://www.ijbs.com/v05p0528.htm
Kasarda, R., Moravčíková, N., Vostrý, L., Krupová, Z., Krupa, E., Lehocká, K., Olšanská, B., Trakovická, A., Nádaský, R., Polák, P., Židek, R., Belej, L., & Golian, J. (2020). Fine-scale analysis of six beef cattle breeds revealed patterns of their genomic diversity. Ital. J. Anim. Sci., 19, 1552-1567. https://doi.org/10.1080/1828051X.2020.1852894
Howe, K. L., Achuthan, P., Allen, J., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I. M., Azov, A. G., Bennett, R., Bhai, J., Billis, K., Boddu, S., Charkhchi, M., Cummins, C., Da Rin Fioretto, L., Davidson, C., Dodiya, K., El Houdaigui, B., Fatima, R., ... Flicek, P. (2021). Ensembl 2021. Nucleic Acids Research, 49(D1), D884–D891. https://doi.org/10.1093/nar/gkaa942
Liang, W., Zhang, H. L., Liu, Y., Lu, B. C., Liu, X., Li, Q., & Cao, Y. (2014). Investigation of the association of two candidate genes (H-FABP and PSMC1) with growth and carcass traits in Qinchuan beef cattle from China. Genetics and Molecular Research, 13(1), 1876-1884. https://doi.org/10.4238/2014.March.17.15
Lindholm-Perry, A. K., Sexten, A. K., Kuehn, L. A., Smith, T. P., King, D. A., Shackelford, S. D., Wheeler, T. L., Ferrell, C. L., Jenkins, T. G., Snelling, W. M., & Freetly, H. C. (2011). Association, effects and validation of polymorphisms within the NCAPG - LCORL locus located on BTA6 with feed intake, gain, meat and carcass traits in beef cattle. BMC Genetics, 12, 103. https://doi.org/10.1186/1471-2156-12-103
Lischer, H.E.L., & Excoffier, L. (2012). PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298-299. https://doi.org/10.1093/bioinformatics/btr642
Machado, P. C., Brito, L. F., Martins, R., Pinto, L. F. B., Silva, M. R., & Pedrosa, V. B. (2022). Genome-Wide Association Analysis Reveals Novel Loci Related with Visual Score Traits in Nellore Cattle Raised in Pasture-Based Systems. Animals, 12(24), 3526. https://doi.org/10.3390/ani12243526
Melucci, L. M., Panarace, M., Feula, P., Villarreal, E. L., Grigioni, G., Carduza, F., Soria, L. A., Mezzadra, C. A., Arceo, M. E., Papaleo Mazzucco, J., Corva, P. M., Irurueta, M., Rogberg-Muñoz, A., & Miquel, M. C. (2012). Genetic and management factors affecting beef quality in grazing Hereford steers. Meat science, 92(4), 768-774. https://doi.org/10.1016/j.meatsci.2012.06.036
Orrù, L., Cifuni, G. F., Piasentier, E., Corazzin, M., Bovolenta, S., & Moioli, B. (2011). Association analyses of single nucleotide polymorphisms in the LEP and SCD1 genes on the fatty acid profile of muscle fat in Simmental bulls. Meat science, 87(4), 344-348. https://doi.org/10.1016/j.meatsci.2010.11.009
Panea, B., Sañudo, C., Olleta, J.L., & Sierra, I. (2010). Caracterización de la canal y la carne de la raza bovina menorquina. Archivos de Zootecnia, 59(227), 467-470. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0004-05922010000300018&lng=es&tlng=es
Peakall, R. & Smouse, P.E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28(19), 2537-2539. http://bioinformatics.oxfordjournals.org/content/28/19/2537
Picard, B., Lefaucheur, L., Berri, C., & Duclos, M. J. (2002). Muscle fibre ontogenesis in farm animal species. French-Polish Symposium Animal and Growth development: Regulatory mechanisms. Reprod. Nutr. Dev., 42(5), 415-431. https://doi.org/10.1051/rnd:2002035
Ribeca, C., Bonfatti, V., Cecchinato, A., Albera, A., Gallo, L., & Carnier, P. (2014). Effect of polymorphisms in candidate genes on carcass and meat quality traits in double muscled Piemontese cattle. Meat science, 96(3), 13761383. https://doi.org/10.1016/j.meatsci.2013.11.028
Robinson, J., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E., Getz, G., & Mesirov, J. P. (2011). Integrative Genomics Viewer. Nat. Biotechnol., 29, 24-26. https://doi.org/10.1038/nbt.1754
Rodríguez-González, K., Valverde Abarca, A., Rodríguez-González, J., Murillo-Bravo, O., & Camacho-Calvo, M. (2018). Effects of genotype and finish feed on commercial cuts and carcass quality traits of steers beef cattle. Agronomía Mesoamericana, 29(1), 105-122. https://doi.org/10.15517/ma.v29i1.28140
Sasago, N., Abe, T., Sakuma, H., Kojima, T., & Uemoto, Y. (2017). Genome-wide association study for carcass traits, fatty acid composition, chemical composition, sugar, and the effects of related candidate genes in Japanese Black cattle. Animal Science Journal, 88(1), 33-44. https://doi.org/10.1111/asj.12595
Snelling, W. M., Allan, M. F., Keele, J. W., Kuehn, L. A., McDaneld, T., Smith, T. P., Sonstegard, T. S., Thallman, R. M., & Bennett, G. L. (2010). Genome-wide association study of growth in crossbred beef cattle. Journal of Animal Science, 88(3), 837-848. https://doi.org/10.2527/jas.2009-2257
Solodneva, E., Svishcheva, G., Smolnikov, R., Bazhenov, S., Konorov, E., Mukhina, V., & Stolpovsky, Y. (2023). Genetic structure analysis of 155 transboundary and local populations of cattle (Bos taurus, Bos indicus, and Bos grunniens) based on STR markers. International Journal of Molecular Sciences, 24(5), 5061. https://doi.org/10.3390/ijms24055061
Soria, L. A., & Corva, P. M. (2005). Genetic and environmental factors influencing beef tenderness. Archivos Latinoamericanos De Producción Animal, 12(2). Retrieved from https://ojs.alpa.uy/index.php/ojs_files/article/view/20
Taye, M., Kim, J., Yoon, S. H., Lee, W., Hanotte, O., Dessie, T., Kemp, S., Mwai, O. A., Caetano-Anolles, K., Cho, S., Oh, S. J., Lee, H. K., & Kim, H. (2017). Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef. BMC Genetics, 18, 11. https://doi.org/10.1186/s12863-016-0467-1
Valdez-Torres, J. M., Grado Ahuir, J. A., Castro-Valenzuela, B. E., & Burrola-Barraza, M. E. (2020). QTL analysis associated with single nucleotide polymorphisms (SNP) involved in the dairy phenotype of Holstein cattle. Revista Mexicana de Ciencias Pecuarias, 11(4), 1192-1207. https://doi.org/10.22319/rmcp.v11i4.5295
https://www.scielo.org.mx/scielo.php?pid=S2007-11242020000401192&script=sci_arttext&tlng=en
Villalobos Cortés, A. I., Martínez, A. M., Escobar, C., Vega-Pla, J. L., & Delgado, J. V. (2010). Study of genetic diversity of the Guaymi and Guabala bovine populations by means of microsatellites. Livestock Science, 131(1), 4551. https://doi.org/10.1016/j.livsci.2010.02.024
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370. https://doi.org/10.2307/2408641
Woronuk, G. N., Marquess, F. L., James, S. T., Palmer, J., Berryere, T., Deobald, H., Howie, S., & Kononoff, P. J. (2012). Association of leptin genotypes with beef cattle characteristics. Animal Genetics, 43(5), 608-610. https://doi.org/10.1111/j.1365-2052.2012.02320.x
Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19(3), 395-420. https://doi.org/10.1111/j.1558-5646.1965.tb01731.x
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.